A semiparametric regression model under biased sampling and random censoring: A local pseudo‐likelihood approach
نویسندگان
چکیده
منابع مشابه
Semiparametric Approach to a Random Effects Quantile Regression Model.
We consider a random effects quantile regression analysis of clustered data and propose a semiparametric approach using empirical likelihood. The random regression coefficients are assumed independent with a common mean, following parametrically specified distributions. The common mean corresponds to the population-average effects of explanatory variables on the conditional quantile of interest...
متن کاملEstimation in a competing risks proportional hazards model under length-biased sampling with censoring.
What population does the sample represent? The answer to this question is of crucial importance when estimating a survivor function in duration studies. As is well-known, in a stationary population, survival data obtained from a cross-sectional sample taken from the population at time t(0) represents not the target density f (t) but its length-biased version proportional to t f (t), for t > 0. ...
متن کاملA Unified Approach to Semiparametric Transformation Models under General Biased Sampling Schemes.
We propose a unified estimation method for semiparametric linear transformation models under general biased sampling schemes. The new estimator is obtained from a set of counting process-based unbiased estimating equations, developed through introducing a general weighting scheme that offsets the sampling bias. The usual asymptotic properties, including consistency and asymptotic normality, are...
متن کاملSemiparametric location estimation under non-random sampling.
We study a class of semiparametric skewed distributions arising when the sample selection process produces non-randomly sampled observations. Based on semiparametric theory and taking into account the symmetric nature of the population distribution, we propose both consistent estimators, i.e. robust to model mis-specification, and efficient estimators, i.e. reaching the minimum possible estimat...
متن کاملExponential semiparametric regression models under random censorship∗
Using the weighted maximum likelihood method, we propose a consistent estimation of parametric portion and nonparametric portion in exponential semiparametric regression models under random censorship. A small Monte Carlo study is carried out to examine the proposed estimation method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Journal of Statistics
سال: 2020
ISSN: 0319-5724,1708-945X
DOI: 10.1002/cjs.11580